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ABSTRACT 
Motivation: Widespread availability of low-cost, full genome se-
quencing will introduce new challenges for bioinformatics.   
Results: This review outlines recent developments in sequencing 
technologies and genome analysis methods for application in per-
sonalized medicine.  New methods are needed in four areas to real-
ize the potential of personalized medicine: 1) processing large-scale 
robust genomic data; 2) interpreting the functional effect and the 
impact of genomic variation; 3) integrating systems data to relate 
complex genetic interactions with phenotypes; and 4) translating 
these discoveries into medical practice. 
Contact: russ.altman@stanford.edu 
Supplementary information: Supplementary data are available at 
Bioinformatics online. 

1 INTRODUCTION  
We are on the verge of the genomic era: doctors and patients will 
have access to genetic data to customize medical treatment.  Con-
sumers can already get 500,000 to 1,000,000 variant markers ana-
lyzed with associated trait information (Hindorff, et al., 2009), and 
soon full genome sequencing will cost less than $1000 (Drmanac, 
et al., 2010).  One group has performed a complete clinical as-
sessment of a patient using a personal genome (Ashley, et al., 
2010), and the 1000 Genomes Project is sequencing 1000 indi-
viduals (1000 Genomes Project Consortium, et al., 2010).  In the 
coming years, the bioinformatics world will be inundated with 
individual genomic data.  This flood of data introduces significant 
challenges that the bioinformatics community needs to address.  
This review outlines the developments that led to these challenges, 
the previous work that can address them, and the need for new 
methods to address them.  The challenges fall into four main areas: 
1) processing large-scale robust genomic data; 2) interpreting the 
functional impacts of genomic variation; 3) integrating data to 
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relate complex interactions with phenotypes; and 4) translating 
these discoveries into medical practices. 

2 THE PROMISE OF PERSONALIZED MEDICINE 
In the last decade, molecular science has made many advances to 
benefit medicine, including the Human Genome project, Interna-
tional HapMap project, and Genome Wide Association Studies 
(GWAS) (International HapMap Consortium, 2005).  Single Nu-
cleotide Polymorphisms (SNPs) are now recognized as the main 
cause of human genetic variability and are already a valuable re-
source for mapping complex genetic traits (Collins, et al., 1997). 
Thousands of DNA variants have been identified that are associ-
ated with diseases and traits (Hindorff, et al., 2009).  By combining 
these genetic associations with phenotypes and drug response, 
personalized medicine will tailor treatments to the patients’ spe-
cific genotype (see Fig 1).  Although whole genome sequences are 
not used in regular practice today (McGuire and Burke, 2008), 
there are already many examples of personalized medicine in cur-
rent practice.  Chemotherapy medications such as trastuzumab and 
imatinib target specific cancers (Gambacorti-Passerini, 2008; 
Hudis, 2007), a targeted pharmacogenetic dosing algorithm is used 
for warfarin (International Warfarin Pharmacogenetics 
Consortium, et al., 2009; Sagreiya, et al., 2010), and the incidence 
of adverse events is reduced by checking for susceptible genotypes 
for drugs like abacavir, carbamazepine, and clozapine (Dettling, et 
al., 2007; Ferrell and McLeod, 2008; Hetherington, et al., 2002).   

 
Despite all of these advances, many challenges need to be ad-
dressed to make personalized medicine a reality.  Today, a pa-
tient’s genetics are consulted only for a few diagnoses and treat-
ment plans and only in certain medical centers.  Even if doctors  
had access to their patients’ genomes today, only a small percent-
age the genome could even be used (Yngvadottir, et al., 2009).  
Many of the annotations come from association studies, which tend 
to identify variants with small effect sizes and have limited appli-
cations for healthcare (Moore, et al., 2010).  By addressing the 
challenges outlined in this review bioinformatics will create the 
tools to tailor medical care to each individual genome, rather than 
rely on blanket therapies (Ginsburg and Willard, 2009).  
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3 CHALLENGE 1: PROCESSING LARGE-SCALE 
ROBUST GENOMIC DATA 

Sequencing technologies are becoming affordable and are replac-
ing the microarray based genotyping methods, which were limited 
to interrogating regions of known variation (Ng, et al., 2010).  
Now a whole genome or a few dozen exomes can be sequenced in 
less than two weeks with an error rate of approximately 1 error per 
100 kilobases (Drmanac, et al., 2010).  Even such low error rates 
can lead to a significant number of errors; a 3-gigabase human 
genome would have approximately 30,000 erroneous variant calls. 
 
The error rate from these technologies is a source of significant 
challenges in applications, including discovering novel variants.  
Each newly sequenced genome is expected to have between 
100,000-300,000 previously undiscovered SNPs and less than 
1,000 somatic mutations per generation (1000 Genomes Project 
Consortium, et al., 2010).  The number of expected mutations may 
decrease as new genomes are sequenced, however, such a high 
number of errors turns variant discovery into a “needle in a hay-
stack” problem.  Whenever a novel variant is identified it will still 
have to be verified due to this false positive rate.   In addition, other 
classes of variation, such as short insertion-deletion variants (in-
dels), as well as copy number variants (CNVs) and structural vari-
ants (SVs), are even more difficult to detect using high-throughput 
sequencing.  New algorithms for calling indels, CNVs, and SVs 
from read data will be crucial in detecting these types of variations 
for clinical applications. 
 
Even high-quality sequence reads must be placed into their ge-
nomic context to identify variants, which is an active area of re-
search since, for example, different mapping and alignment algo-
rithms often yield different results.  Because de novo assembly 
(Shendure and Ji, 2008) is slow and complicated by repetitive ele-
ments, sequences are usually mapped to a genomic reference se-
quence instead.  Algorithms such as BLAST (Altschul, et al., 
1990) or Smith-Waterman (Smith TF, 1981) have been tradition-
ally used, but their execution speed depends on genome size.  
While individual queries may only take seconds per CPU, aligning 
100 million of them would require more than 3 CPU years. 
 
As a result, new algorithms are being developed to address this 
problem.  BLAT is similar to standard sequence alignment, but 
also incorporates an indexed version of the genome instead of lin-
ear search (Kent, 2002).  Many packages like BLAT have been 
optimized for the alignment of short reads by using hashing, prefix 
and suffix trees, or other heuristics (Li and Homer, 2010).  BWA, 
used for the 1000 Genomes Project, is highly accurate with < 0.1% 
errors for simulated data and can map ~7 Gb of short reads per 
CPU day (Li and Durbin, 2009; Li and Homer, 2010).  To achieve 
the standard 30X coverage would still require 13 CPU days and so 
is ideally performed on a cluster or by using a cloud computing 
environment (Dudley and Butte, 2010), which can be used for 
efficient computational analysis of secure clinical data. 
 
A remaining challenge for short read assemblers is reference se-
quence bias: reads that more closely resemble the reference se-
quence are more likely to successfully map as compared with reads 
that contain valid mismatches.  Proper care must be taken to avoid 

errors in these alignments, and is discussed in a recent review 
(Pool, et al., 2010).  There is an inherent trade-off in allowing 
mismatches: the program must allow for mismatches without re-
sulting in false alignments.  Reference sequence bias is important 
when making heterozygous SNP calls and when analyzing allele-
specific expression using RNA-Seq data (Degner, et al., 2009).  
The problem is exacerbated with longer reads: allowing for one 
mismatch per read is acceptable for 35 base pair reads, but insuffi-
cient for 100 base pair reads. 
 
When the diploid sequence is known, reference sequence bias can 
be avoided by mapping the reads to both strands, as can be done 
when mapping RNA-Seq reads to a sequenced genome.  An alter-
native approach is to use ambiguous base codes to avoid the re-
quirement of storing redundant sequences, such as with MOSAIK, 
developed by the Marth Lab (Michael Stromberg, Boston Univer-
sity).  Using this approach, a C/T SNP can be represented as Y.  
This representation increases the storage requirements: because the 
genome is often stored in a hashed data structure, the number of 
keys and mappings increases to accommodate the new codes.   
 
Another challenge is developing new methods for novel SNP dis-
covery: while the calling of common variants can be aided by their 
presence in a database such as dbSNP, accurate detection of rare 
and novel variants will require increased confidence in the SNP 
call.  De novo alignment methods require too much computation 
time to be feasible and reference alignment methods are biased.  
The challenge is to develop new algorithms that are computation-
ally tractable and still avoid reference sequence bias. 
 
Finally, there is a pressing need to improve quality control metrics.  
We can judge mapping and SNP call qualities by the ratio of tran-

Fig 1.  Personalized medicine. Personal genomics connect genotype to 
phenotype and provide insight into disease. Pharmacogenomics connect 
connects genotype to patient specific treatment. Traditional medicine de- 
fines the pathologic states and clinical observations to evaluate and adjust 
treatments. 
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sition (purine/purine or pyrimidine/pyrimidine) substitutions to 
transversion (purine/pyrimidine) substitutions.  These ratios were 
established during previous sequencing efforts and we expect to 
see similar ratios (~2-2.1) for newly human genomes (Zhang and 
Gerstein, 2003).  When working with genomes from families we 
can estimate errors with the Mendelian inheritance error (MIE) 
rate: impossible combinations of inheritance most likely represent 
errors (Ewen, et al., 2000).  Transition/transversion ratio and MIE 
metrics are useful for measuring the quality of a dataset and are 
used by most large projects, such as the 1000 Genomes project 
(1000 Genomes Project Consortium, et al., 2010).  At the individ-
ual SNP level, we must rely on relative quality scores, so in order 
to confidently identify novel variants we must be verify them with 
an independent method.  Variants can be validated with targeted 
resequencing or genotyping arrays.  Alternatively, whole genome 
resequencing by an orthogonal sequencing platform can be per-
formed, but is expensive and time consuming. 

4 CHALLENGE 2: INTERPRETATION OF THE 
FUNCTIONAL EFFECT AND THE IMPACT OF 
GENOMIC VARIATION 

After genomic data has been processed, the functional effect and 
the impact of the genetic variations must be analyzed.  Genome-
wide association studies (GWAS) have been used to assess the 
statistical associations of SNPs with many important common 
diseases (WTCC Consortium, 2007).  These methods are providing 
new insights, but only a limited number of variants have been 
characterized, and understanding the functional relationship be-
tween associated variants and phenotypic traits has been difficult 
(Frazer, et al., 2009). 
 
In the strictest definition, a SNP is a single nucleotide variant 
where the allele frequency in the human population is higher then 
1%.  In this review, we use the term SNP in a broader sense to also 
include rare variants that occur in a smaller fraction of the popula-
tion.  Important issues for predicting the impact of SNPs are data 
management, retrieval, and quality control.  During the last few 
years, the number of known SNPs has increased at an exponential 
rate (Fig 2).  The dbSNP database (Sherry, et al., 2001) is the most 
comprehensive repository of SNPs data from different organisms.  
At the time of writing this review, the database contains about 20 
million validated human SNPs (Build 132, September 2010).  The 
Human Gene Mutation Database (HGMD) is a comprehensive 
collection of germline mutations in genes that are associated with 
human inherited diseases.  The free version for academic and non-
profit users contains more than 76,000 mutations from about 2,900 
genes.  The SwissVar is a database of manually annotated mis-
sense SNPs (mSNPs) and contains 56,000 mSNPs from more than 
11,000 genes. 
 
Another important resource for SNP data is the Online Mendelian 
Inheritance in Man (OMIM) database (Amberger, et al., 2009) of 
human SNPs and their associations with Mendelian disorders.  The 
PharmGKB database contains manually curated associations be-
tween genes and drugs and a catalog of genetic variations with 
known impact on drug response, including more than 40 very im-
portant pharmacogenes (VIPs) and over 3,400 annotated drug-

response variants.  The Catalogue of Somatic Mutations in Cancer 
(COSMIC) at the Sanger Institute stores ~25,000 unique mutations 
somatic mutation data related to human cancer extracted from the 
literature.  A selection of the most significant SNP data sources is 
reported in supplemental table 1. 
 
In the last few years, several computational methods have been 
developed to predict deleterious missense SNPs. (Karchin, 2009; 
Mooney, 2005; Tavtigian, et al., 2008).  These methods have used 
different approaches such as empirical rules (Ng and Henikoff, 
2003; Ramensky, et al., 2002), Hidden Markov Models (Thomas 
and Kejariwal, 2004), Neural Networks (Bromberg, et al., 2008; 
Ferrer-Costa, et al., 2005), Decision Trees (Dobson, et al., 2006; 
Krishnan and Westhead, 2003), Random Forests (Bao and Cui, 
2005; Carter, et al., 2009; Kaminker, et al., 2007; Li, et al., 2009; 
Wainreb, et al., 2010) and Support Vector Machines (Calabrese, et 
al., 2009; Capriotti, et al., 2008; Capriotti, et al., 2006; Karchin, et 
al., 2005; Yue and Moult, 2006). 
 
The prediction algorithms input features generally include amino 
acid sequence, protein structure, and evolutionary information.  
The amino acid sequence features rely on the physico-chemical 
properties of the mutated residues such as hydrophobicity, charge, 
polarity, and bulkiness.  Protein structural information describes 
the structural environment of the mutation and has been success-
fully used to predict the protein stability change upon mutation 
(Capriotti, et al., 2004; Capriotti, et al., 2005; Schymkowitz, et al., 
2005; Zhou and Zhou, 2002).  Some of the most important features 
for the prediction of the impact of missense SNPs are derived from 
evolutionary analysis: critical amino acids are often conserved in 
protein families and so changes at conserved positions tend to be 
deleterious. 
 
New algorithms that include knowledge-based information are 
being developed (Alexiou, et al., 2009; Calabrese, et al., 2009; 
Kaminker, et al., 2007).  Methods based on evolutionary informa-
tion for the prediction of mSNPs include SIFT (Ng and Henikoff, 
2003) and PolyPhen (Ramensky, et al., 2002).  SIFT scores the 
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Fig 2.  Number of validated human SNPs in dbSNP over time. 
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normalized probabilities for all possible substitutions using a mul-
tiple sequence alignment between homolog proteins, and PolyPhen 
predicts the impact of mSNPs using different sequence-based fea-
tures and a Position Specific Independent Counts (PSIC) matrix 
from multiple sequence alignment.  The PANTHER algorithm 
(Thomas, et al., 2003) uses a library of protein family HMM mod-
els to predict deleterious mutations.  Recent work shows that three-
dimensional structural features improve the prediction of disease-
related mSNPs (Bao and Cui, 2005; Karchin, et al., 2005; Yue and 
Moult, 2006).  Knowledge-based information has been used to 
increase the accuracy of prediction algorithms to over 80%.  For 
example, SNPs&GO (Calabrese, et al., 2009) is an algorithm based 
on functional information that takes in input log-odd scores calcu-
lated using Gene Ontology (GO) annotation terms. MutPred (Li, et 
al., 2009) evaluates the probabilities of gain or loss of structure and 
function upon mutations and predicts their impact using a Random 
Forest based approach.  Selected methods for the prediction of 
deleterious mSNPs are listed in supplemental table 2 and more 
details about mSNP predictors have been recently reviewed (Cline 
and Karchin, 2011; Thusberg, et al., 2011) 
 
Prediction methods do not provide any information about the 
pathophysiology of the diseases and so experimental tests are re-
quired to validate genetic predictions.  Laboratory validation is 
expensive and time consuming and so there is a need for fast and 
accurate methods for gene prioritization.  Currently, the most ef-
fective strategy uses the concept of similarity to genes that are 
linked to the biological process of interest (guilt-by-association).  
The input data for the available gene prioritization methods are 
derived from functional annotation, protein-protein interaction 
data, biological pathways, and literature. 
 
The SUSPECT algorithm prioritizes genes by comparing sequence 
features, gene expression data, Interpro domains, and functional 
terms (Adie, et al., 2006).  ToppGene combines mouse phenotype 
data with human gene annotations and literature.  MedSim uses 
functional information from human disease genes or proteins and 
their orthologs in mouse modeles (Schlicker, et al., 2010).  En-
deavour is trained on genes involved in a known biological process 
and ranks candidate genes after considering several genomic data 
sources (Tranchevent, et al., 2008).  G2D prioritization strategy is 
based on a combination of data mining on biomedical databases 
and sequence features (Perez-Iratxeta, et al., 2005).  PolySearch 
analyzes biomedical databases to build relationships between dis-
eases, genes, mutations, drugs, pathways, tissues, organs and me-
tabolites in humans (Cheng, et al., 2008).  MimMiner ranks pheno-
types using text mining by comparing the human phenome and 
disease phenotypes (van Driel, et al., 2006).  PhenoPred detects 
gene–disease associations using the human protein–protein interac-
tion network, known gene–disease associations, protein sequences, 
and protein functional information at the molecular level 
(Radivojac, et al., 2008).  GeneMANIA (Andersen, et al., 2008) 
generates hypotheses about gene function, analyzing gene lists and 
prioritizing genes for functional assays. The method takes in input 
genes from six organisms and analyzes them using information 
from different general and organism-specific functional genomics 
data sets.  For more details about gene prioritizing tools, a recently 
published review (Tranchevent, et al., 2010), and the Gene Priori-

tization Portal provide comprehensive descriptions of available 
predictors. 
 
The methods for the analysis of SNPs are mainly limited to the 
prediction of the impact of missense SNPs.  New methods are 
needed to evaluate the impact of insertion, deletion, and synony-
mous SNPs.  In addition, there is a need to detect functional re-
gions in the genome so that the effect of intronic SNPs can be ana-
lyzed, such as those in promoter regions and splicing sites.  For 
non-coding regions, conservation across species is more difficult to 
detect.  Fortunately, with the fast growth of functionally annotated 
genomes our ability to predict the impact of non-coding variants 
will increase.  For example, SNPs occurring in transcriptional mo-
tifs can affect transcription factor binding, which suggests func-
tional consequences for variants in regulatory regions (Kasowski, 
et al., 2010).  Recently a method to identify possible genetic varia-
tions in regulatory regions (is-rSNP) has been developed 
(Andersen, et al., 2008). Is-rSNP combines phylogenetic informa-
tion and transcription factor binding site prediction to identify 
variation in candidate cis-regulatory elements. The detection of 
variants affecting splicing site is also an important task. The 
Skippy algorithm (Woolfe, et al., 2010) analyzes the genomic re-
gion surrounding the variant to predict severe effects on gene func-
tion through disruption of splicing. A more exhaustive description 
of the methods for the prediction of deleterious variants in non-
coding has been recently published (Cline and Karchin, 2011).   
 
Last year, the first edition of the Critical Assessment of Genome 
Interpretation (CAGI) was organized to assess the available meth-
ods for predicting phenotypic impact of genomic variation and to 
stimulate future research. In the first year of CAGI 
(http://genomeinterpretation.org/) the organizers provided six dif-
ferent sets of data for six different tasks.  The majority of the par-
ticipating groups submitted predictions for just two classes of ex-
periments related to the detection of disease-related and function 
modifying variants.  A few groups submitted predictions for the 
other categories: evaluation of risky SNPs from GWAS studies, 
interpretation of the Personal Genome Project data, prediction of 
mutations to P53 function, and the response of breast cancer cell 
lines to different drugs.  Several available predictors performed 
well for disease and functional predictions and there were promis-
ing results in the other categories.  In the future, competitions such 
as CAGI will improve the quality of the available prediction meth-
ods and will renew the challenge for the understanding of genomic 
variation data. 

5 CHALLENGE 3: INTEGRATING SYSTEMS AND 
DATA TO CAPTURE COMPLEXITY 

Given the complex phenotypes involved in personalized medicine, 
the simple “one-SNP, one-phenotype” approach taken by most 
studies is insufficient.  Most medically relevant phenotypes are 
thought to be the result of gene-gene and gene-environment inter-
actions (Manolio, et al., 2009).    For example, drug response often 
depends on multiple pharmacokinetic and pharmacodynamic inter-
actions, which form a robust and tolerant system with highly po-
lymorphic enzymes and many interaction partners (Wilke, et al., 
2005).  As a result of this complexity, a drug response phenotype 
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of interest is likely to depend on many genes and environmental 
factors. 
 
Basic GWAS approaches for pharmacogenomics have had some 
success, including studies of warfarin that have linked the majority 
of variation in response to just two genes, CYP2C9 and VKORC1 
(Limdi and Veenstra, 2008).  These and other studies of warfarin 
have even led to an improved dosing algorithm with improvements 
over the traditional clinical algorithm (International Warfarin 
Pharmacogenetics Consortium, et al., 2009).  Clopidogrel response 
has similarly been associated with variants of CYP2C19 
(Shuldiner, et al., 2009). 
 
Despite this success, there is debate over whether or not traditional 
techniques will be successful for pharmacogenomics.  There is 
concern that pharmacogenomics GWAS themselves are susceptible 
to many limitations: insufficient sample size, selection biases for 
genetic variants, environmental interactions that may affect the 
outcome measures, and multiple gene-gene interactions which may 
underlie unexplained effects (Motsinger-Reif, et al., 2010).  These 
limitations become particularly difficult when researching rare 
events such as the pharmacogentics of adverse events. 
 
The methods for GWAS are designed for single marker associa-
tions and are known to have limitations in explaining the heritabil-
ity of disease (Manolio, et al., 2009).  It is unlikely that these same 
methods will do any better with pharmacogenetics.  In fact, if these 
methods are parameterized for the multiple-marker associations 
necessary for pharmacogenetics then they will suffer from the 
“curse of dimensionality” and lose a significant amount of statisti-
cal power (Bellman and Kalaba, 1959).  For example, to evaluate 
all combinations of 2 SNPs for 1 million SNPs in a genome re-
quires examining nearly 500 billion possibilities.  The challenge 
for bioinformatics is to address this complexity by developing 
methods that combine multiple data sources without losing statisti-
cal power. 
 
Several groups have already tried to deal with this kind of com-
plexity in GWAS for disease (Motsinger, et al., 2007).   Exhaustive 
search (Storey, et al., 2005) and forward search (Consortium, et al., 
2007) have both been applied, however, the former can still lose 
statistical power and the later may miss some associations. Model 
selection methods have been successful with disease and trait 
GWAS studies by using selection techniques to choose multi-
factorial models that balance the false positive rate, statistical pow-
er, and computational requirements of the search (Lee, et al., 2008; 
Wray, et al., 2007; Wu and Zhao, 2009). 
 
Given the size of the genomic data sets, dimensionality reduction 
methods such as principal components analysis, information gain, 
and Multifactor Dimensionality Reduction will be essential to 
make complexity algorithms tractable (Hahn, et al., 2003; 
Statnikov, et al., 2005; Yeung and Ruzzo, 2001).  Some of these 
methods have proven successful for finding multi-locus associa-
tions with diseases such as hypertension and familial amyloid pol-
yneuropathy type I (Soares, et al., 2005; Williams, et al., 2004).  
Many more feature selection techniques for bioinformatics are 
classified and discussed in a recent review (Saeys, et al., 2007).  
These methods can be very effective when dealing with large data-

sets, however they do not integrate with any external knowledge 
sources or inform the biology behind the interactions. 
 
Systems biology and network approaches address to the problem 
of complexity by integrating molecular data at multiple levels of 
biology including genomes, transcriptomes, metabolomes, pro-
teomes, and functional and regulatory networks (Kohl, et al., 
2010).  We can view a disease or a drug response phenotype as a 
global perturbation of networks from their stable state (Auffray, et 
al., 2009).  This approach integrates biological knowledge from 
networks to make inferences about what genes or combinations of 
genes and other biological markers are more likely to be associ-
ated. 
 
Combining disparate data sources can result in novel associations 
and provide insight into gene-gene and gene-environment interac-
tions.  One group created a disease-gene network by combining the 
diseases and associated genes available in OMIM (Goh, et al., 
2007).  Analyzing this network showed that disease genes are often 
non-essential and not necessarily hub-genes.  The same group cre-
ated a Drug-Target network and integrated that network with a 
protein-protein interaction (PPI) network.  The network shows that 
similar drugs cluster together, palliative and etiological drugs show 
different topologies, and newer and experimental drugs tend to-
wards polypharmacology (Yildirim, et al., 2007).  A global map-
ping of pharmacalogical space can be made using chemical struc-
ture, disease indication, and protein sequence and can be used to 
make predictions of polypharmacology (Paolini, et al., 2006).  
Another suggestion is to integrate epigenetic information to further 
our understanding of drug phenotypes (Zhang and Dolan, 2009). 
 
Pathway and gene set methods can also be applied to GWAS, 
where a set of genes is identified that is suspected to be associated.  
These methods are similar to Gene Set Enrichment Analysis 
(GSEA) for microarray expression data (Subramanian, et al., 
2005).  Usually a standard statistical test is used to determine if a 
set of genes is associated (Chasman, 2008; Wang and Li, 2007; 
Yu, et al., 2009), but other more specialized metrics have been 
created.  The SNP Ratio Test compares the number of SNPs in a 
pathway to permuted sets and the Prioritizing Risk Pathways 
method, combines pathway and genetic data into a single metric 
(Chen, et al., 2009; O'Dushlaine, et al., 2009). 
 
Many groups hypothesize that the integrative approach of systems 
biology will successfully link genomic measurements with clinical 
applications (Atkinson and Lyster, 2010; Berg, et al., 2010; 
Hopkins, 2007).  Indeed, one group has integrated chemical simi-
larity metrics, pharmacogenomic interactions, and protein-protein 
interaction to predictive method for pharmacogenes (Hansen, et al., 
2009).  Another group has used similarity of drug ligand sets to 
predict and validate novel “off-target” interactions (Keiser, et al., 
2007). 
 
These systems approaches are encouraging, but bioinformaticians 
need to be careful of a few pitfalls as they proceed.  Methods need 
to be based on high quality data to avoid the “garbage-in, garbage-
out” phenomenon, especially when one incorrect assumption can 
propagate through multiple data source and magnify the error.  For 
example, transferring annotations based on similarity works some-

 at T
echnische U

niversiteit D
elft on M

arch 4, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


6 

times, but could easily associate a paralog with an incorrect func-
tion.  Chemical similarity poses the same risk; two similar mole-
cules may behave very differently biochemically.  Finally, assump-
tions must also be examined carefully, for example, a method that 
relates gene expression with drug targets must bear in mind than 
most drugs bind proteins, not DNA or RNA. 

6 CHALLENGE 4: MAKING IT ALL CLINICALLY 
RELEVANT 

The ultimate challenge for this research is to apply the results for 
improved patient care.  Much of this research has yet to be trans-
lated to the clinic.  In fact, many physicians are unprepared to in-
corporate personal genetic testing into their practice and it is un-
clear how to best apply research results to improve patient care 
(McGuire and Burke, 2008).  One of the areas where bioinformat-
ics can have the greatest clinical impact is in pharmacogenomics. 
 
Most pharmaceutical development addresses medical problems 
with a “one drug fits all” approach (Ehrlich, 1906).  Genetic varia-
tion has been shown to influence drug selection, dosing, and ad-
verse events (Giacomini, et al., 2007), and the therapeutic benefits 
of taking a genetically tailored approach to drug development is 
now recognized (Foot, et al., 2010; Roses, 2004).  One study found 
that a hypothetical pharmacogenetically-driven clinical trial of the 
anti-coagulant warfarin could save up to 60% of the cost and re-
duce possible adverse events (Ohashi and Tanaka, 2010). There are 
already many examples of drugs which have retrospectively been 
found to have strong pharmacogenomic interactions, including 
thiopurines for cancer (Weinshilboum, 2001) and the anti-
coagulant clopiogrel (Shuldiner, et al., 2009). 
 
A trial for using rosiglitazone, an approved Type II diabetes drug, 
for Alzheimer’s disease is an early example of prospective applica-
tion of pharmacogenomics.  The hypothesis was that ApoE4 non-
carriers would have a better response than ApoE4 carriers.  The 
initial Phase II pharmacogenetic-based results appeared to show 
that non-ApoE4 carriers showed improvement over placebo 
(Roses, 2009).  A later study of ApoE4-stratified patients showed 
that no significant benefits, however, the idea of prospective gene-
based stratification for drug trials still holds future promise (Gold, 
et al., 2010).  Prospective gene-stratification hypotheses need to be 
generated for future trials and will require new bioinformatics 
methods (Roses, 2009).  Since new drugs will not have any known 
gene interactions, tools for predicting drug-target or drug-gene 
interactions will be essential (Hansen, et al., 2009; Keiser, et al., 
2009). 
 
Pharmacogenomics has already been successful in improving drug 
prescription and dosing.  Most prescriptions are written with a 
“one dose fits all” approach with adjustments based on gender, 
weight, liver and kidney functions, or allergies.  Some drugs have 
more laborious dosing calculations such as the anti-coagulant war-
farin (Gage and Lesko, 2008; Wysowski, et al., 2007).  Warfarin 
dosing is traditionally determined by a time-intensive “guess and 
test” method, until the coagulation tests stabilize.  Pharmacoge-
nomics identified several SNPs affecting dosing, including-
CYP2C9 and VKORC1 (Higashi, et al., 2002; Rieder, et al., 2005; 

Rost, et al., 2004).  Similar studies have been applied to clopido-
grel, tramadol, anti-psychotics, and many other drugs (Wilffert, et 
al., 2010).  Ultimately, pharmacogenomic prescription and dosing 
algorithms need to be accessible to physicians, like the new war-
farin dosing algorithms from the International Warfarin Pharmaco-
genomic Consortium (IWPC) (International Warfarin 
Pharmacogenetics Consortium, et al., 2009).  Moreover, the cur-
rent state of medical practice needs to be updated to include rou-
tine pharmacogenetic testing, educating and training physicians in 
personalized medicine, and further clinical trials to prove the effi-
cacy of pharmacogenetic based prescriptions. 
 
Bioinformatics also translates discoveries to the clinic by dissemi-
nating discoveries through curated, searchable databases like 
PharmGKB, dbGaP, PacDB, and the FDA AERS (Gamazon, et al., 
2010; Mailman, et al., 2007; Thorn, et al., 2010).  A major bottle-
neck for these databases is manual curation of the data.  Biologi-
cally and medically focused text mining algorithms can speed the 
collection of this structured data, such as methods that use sentence 
syntax and natural language processing to derive drug-gene and 
gene-gene interactions from scientific literature (Coulet, et al., 
2010; Garten, et al., 2010).     These databases and methods need to 
be developed and used carefully.  All of these data sources are 
susceptible to errors and so validation of data is essential, espe-
cially before the information is applied in the clinic. 
 
Finally, there are challenges and opportunities for bioinformatics 
to integrate with the electronic medical record (EMR) (Busis, 
2010).  For example, the BioBank system at Vanderbilt links pa-
tient DNA with a de-identified EMRs to provide a rich research 
database for additional translational research in disease-gene and 
drug-gene associations (Denny, et al., 2010; Roden, et al., 2008).  
Some health care companies and HMOs have also begun to collect 
genetic information from their patients.  In order to even imple-
ment such genome-based systems, the medical infrastructure will 
have to shift from paper to electronic medical records, in order to 
be compatible with bioinformatics portals for data delivery and 
interpretation.  Ultimately, bioinformatics needs to develop meth-
ods that interrogate the genome in the clinic and allow physicians 
to use personalized medicine in their daily practice. 

ACKNOWLEDGEMENTS 
EC would like to acknowledge Dr Laura Kerov-Ghiglianovich who 
helped to draw the figure 1. 
 
Funding: GHF and KJK are supported by training grant NIH 
LM007033.  RD is supported by Stanford Medical Scholars.  EC is 
supported by the Marie Curie International Outgoing Fellowship 
program (PIOF-GA-2009-237225). RBA is supported by 
LM05652 and the NIH/NIGMS Pharmacogenetics Research Net-
work and Database and the PharmGKB resource (NIH 
U01GM61374). 
 
 
 
 
 

 at T
echnische U

niversiteit D
elft on M

arch 4, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


7 

REFERENCES 
 
1000 Genomes Project Consortium, et al. (2010) A map of human genome variation 

from population-scale sequencing, Nature, 467, 1061-1073. 

Adie, E.A., et al. (2006) SUSPECTS: enabling fast and effective prioritization of 

positional candidates, Bioinformatics, 22, 773-774. 

Alexiou, P., et al. (2009) Lost in translation: an assessment and perspective for 

computational microRNA target identification. Bioinformatics. pp. 3049-3055. 

Altschul, S.F., et al. (1990) Basic local alignment search tool, J Mol Biol, 215, 403-

410. 

Amberger, J., et al. (2009) McKusick's Online Mendelian Inheritance in Man 

(OMIM), Nucleic Acids Res, 37, D793-796. 

Andersen, M.C., et al. (2008) In silico detection of sequence variations modifying 

transcriptional regulation, PLoS Comput Biol, 4, e5. 

Ashley, E.A., et al. (2010) Clinical assessment incorporating a personal genome. 

Lancet. pp. 1525-1535. 

Atkinson, A. and Lyster, P. (2010) Systems Clinical Pharmacology. Clinical 

Pharmacology & Therapeutics. pp. 3-6. 

Auffray, C., Chen, Z. and Hood, L. (2009) Systems medicine: the future of medical 

genomics and healthcare. Genome. 

Bao, L. and Cui, Y. (2005) Prediction of the phenotypic effects of non-synonymous 

single nucleotide polymorphisms using structural and evolutionary information, 

Bioinformatics, 21, 2185-2190. 

Bellman, R. and Kalaba, R. (1959) A MATHEMATICAL THEORY OF ADAPTIVE 

CONTROL PROCESSES. Proc Natl Acad Sci USA. pp. 1288-1290. 

Berg, J., Rogers, M. and Lyster, P. (2010) Systems Biology and Pharmacology. 

Clinical Pharmacology & Therapeutics. pp. 17-19. 

Bromberg, Y., Yachdav, G. and Rost, B. (2008) SNAP predicts effect of mutations on 

protein function, Bioinformatics, 24, 2397-2398. 

Busis, N.A. (2010) How can I choose the best electronic health record system for my 

practice?, Neurology, 75, S60-64. 

Calabrese, R., et al. (2009) Functional annotations improve the predictive score of 

human disease-related mutations in proteins, Hum Mutat, 30, 1237-1244. 

Capriotti, E., et al. (2008) Use of estimated evolutionary strength at the codon level 

improves the prediction of disease-related protein mutations in humans, Hum Mutat, 

29, 198-204. 

Capriotti, E., Calabrese, R. and Casadio, R. (2006) Predicting the insurgence of 

human genetic diseases associated to single point protein mutations with support 

vector machines and evolutionary information, Bioinformatics, 22, 2729-2734. 

Capriotti, E., Fariselli, P. and Casadio, R. (2004) A neural-network-based method for 

predicting protein stability changes upon single point mutations, Bioinformatics, 20 

Suppl 1, I63-I68. 

Capriotti, E., Fariselli, P. and Casadio, R. (2005) I-Mutant2.0: predicting stability 

changes upon mutation from the protein sequence or structure, Nucleic Acids Res, 33, 

W306-310. 

Carter, H., et al. (2009) Cancer-specific high-throughput annotation of somatic 

mutations: computational prediction of driver missense mutations, Cancer Res, 69, 

6660-6667. 

Chasman, D. (2008) On the utility of gene set methods in genomewide association 

studies of quantitative traits. Genet Epidemiol. 

Chen, L., et al. (2009) Prioritizing risk pathways: a novel association approach to 

searching for disease pathways fusing SNPs and pathways. …. 

Cheng, D., et al. (2008) PolySearch: a web-based text mining system for extracting 

relationships between human diseases, genes, mutations, drugs and metabolites, 

Nucleic Acids Res, 36, W399-405. 

Cline, M.S. and Karchin, R. (2011) Using bioinformatics to predict the functional 

impact of SNVs, Bioinformatics, 27, 441-448. 

Collins, F.S., Guyer, M.S. and Charkravarti, A. (1997) Variations on a theme: 

cataloging human DNA sequence variation, Science, 278, 1580-1581. 

Consortium, I.H., et al. (2007) A second generation human haplotype map of over 3.1 

million SNPs, Nature, 449, 851-861. 

Coulet, A., et al. (2010) Using text to build semantic networks for pharmacogenomics. 

J Biomed Inform. pp. 1009-1019. 

Degner, J.F., et al. (2009) Effect of read-mapping biases on detecting allele-specific 

expression from RNA-sequencing data, Bioinformatics, 25, 3207-3212. 

Denny, J.C., et al. (2010) PheWAS: demonstrating the feasibility of a phenome-wide 

scan to discover gene-disease associations. Bioinformatics. pp. 1205-1210. 

Dettling, M., et al. (2007) Clozapine-induced agranulocytosis in schizophrenic 

Caucasians: confirming clues for associations with human leukocyte class I and II 

antigens. Pharmacogenomics J. pp. 325-332. 

Dobson, R.J., et al. (2006) Predicting deleterious nsSNPs: an analysis of sequence and 

structural attributes, BMC Bioinformatics, 7, 217. 

Drmanac, R., et al. (2010) Human genome sequencing using unchained base reads on 

self-assembling DNA nanoarrays, Science, 327, 78-81. 

Dudley, J.T. and Butte, A.J. (2010) In silico research in the era of cloud computing, 

Nat Biotechnol, 28, 1181-1185. 

Ehrlich, P. (1906) Die aufgaben der chemotherapie., Frankfurter Zeitung und 

Handelsblatt: Zweites Morgenblatt. 

Ewen, K.R., et al. (2000) Identification and analysis of error types in high-throughput 

genotyping, Am J Hum Genet, 67, 727-736. 

Ferrell, P.B. and McLeod, H.L. (2008) Carbamazepine, HLA-B*1502 and risk of 

Stevens-Johnson syndrome and toxic epidermal necrolysis: US FDA 

recommendations. Pharmacogenomics. pp. 1543-1546. 

Ferrer-Costa, C., et al. (2005) PMUT: a web-based tool for the annotation of 

pathological mutations on proteins, Bioinformatics, 21, 3176-3178. 

Foot, E., Kleyn, D. and Palmer Foster, E. (2010) Pharmacogenetics--pivotal to the 

future of the biopharmaceutical industry. Drug Discov Today. pp. 325-327. 

Frazer, K.A., et al. (2009) Human genetic variation and its contribution to complex 

traits, Nat Rev Genet, 10, 241-251. 

Gage, B.F. and Lesko, L.J. (2008) Pharmacogenetics of warfarin: regulatory, 

scientific, and clinical issues. J Thromb Thrombolysis. pp. 45-51. 

Gamazon, E.R., et al. (2010) PACdb: a database for cell-based pharmacogenomics. 

Pharmacogenet Genomics. pp. 269-273. 

Gambacorti-Passerini, C. (2008) Part I: Milestones in personalised medicine--

imatinib. Lancet Oncol. pp. 600. 

Garten, Y., Coulet, A. and Altman, R.B. (2010) Recent progress in automatically 

extracting information from the pharmacogenomic literature. Pharmacogenomics. pp. 

1467-1489. 

Giacomini, K.M., et al. (2007) The pharmacogenetics research network: from SNP 

discovery to clinical drug response. Clin Pharmacol Ther. pp. 328-345. 

Ginsburg, G.S. and Willard, H.F. (2009) Genomic and personalized medicine: 

foundations and applications. Transl Res. pp. 277-287. 

Goh, K.-I., et al. (2007) The human disease network. Proc Natl Acad Sci USA. pp. 

8685-8690. 

 at T
echnische U

niversiteit D
elft on M

arch 4, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


8 

Gold, M., et al. (2010) Rosiglitazone monotherapy in mild-to-moderate alzheimer's 

disease: results from a randomized, double-blind, placebo-controlled phase III study, 

Dement Geriatr Cogn Disord, 30, 131-146. 

Hahn, L.W., Ritchie, M.D. and Moore, J.H. (2003) Multifactor dimensionality 

reduction software for detecting gene-gene and gene-environment interactions. 

Bioinformatics. pp. 376-382. 

Hansen, N.T., Brunak, S. and Altman, R.B. (2009) Generating genome-scale 

candidate gene lists for pharmacogenomics. Clin Pharmacol Ther. pp. 183-189. 

Hetherington, S., et al. (2002) Genetic variations in HLA-B region and 

hypersensitivity reactions to abacavir, Lancet, 359, 1121-1122. 

Higashi, M.K., et al. (2002) Association between CYP2C9 genetic variants and 

anticoagulation-related outcomes during warfarin therapy. JAMA. pp. 1690-1698. 

Hindorff, L.A., et al. (2009) Potential etiologic and functional implications of 

genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA. 

pp. 9362-9367. 

Hopkins, A. (2007) Network pharmacology. Nat Biotechnol. pp. 1110-1111. 

Hudis, C.A. (2007) Trastuzumab--mechanism of action and use in clinical practice. N 

Engl J Med. pp. 39-51. 

International Warfarin Pharmacogenetics Consortium, et al. (2009) Estimation of the 

warfarin dose with clinical and pharmacogenetic data. N Engl J Med. pp. 753-764. 

Kaminker, J.S., et al. (2007) CanPredict: a computational tool for predicting cancer-

associated missense mutations, Nucleic Acids Res, 35, W595-598. 

Karchin, R. (2009) Next generation tools for the annotation of human SNPs, Brief 

Bioinform, 10, 35-52. 

Karchin, R., et al. (2005) LS-SNP: large-scale annotation of coding non-synonymous 

SNPs based on multiple information sources, Bioinformatics, 21, 2814-2820. 

Kasowski, M., et al. (2010) Variation in transcription factor binding among humans, 

Science, 328, 232-235. 

Keiser, M., et al. (2007) Relating protein pharmacology by ligand chemistry. Nat 

Biotechnol. pp. 197-206. 

Keiser, M.J., et al. (2009) Predicting new molecular targets for known drugs. Nature. 

pp. 175-181. 

Kent, W.J. (2002) BLAT--the BLAST-like alignment tool, Genome Res, 12, 656-664. 

Kohl, P., et al. (2010) Systems biology: an approach. Clinical Pharmacology & 

Therapeutics. pp. 25-33. 

Krishnan, V.G. and Westhead, D.R. (2003) A comparative study of machine-learning 

methods to predict the effects of single nucleotide polymorphisms on protein function, 

Bioinformatics, 19, 2199-2209. 

Lee, S.H., et al. (2008) Predicting unobserved phenotypes for complex traits from 

whole-genome SNP data. PLoS Genet. pp. e1000231. 

Li, B., et al. (2009) Automated inference of molecular mechanisms of disease from 

amino acid substitutions, Bioinformatics, 25, 2744-2750. 

Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with Burrows-

Wheeler transform, Bioinformatics, 25, 1754-1760. 

Li, H. and Homer, N. (2010) A survey of sequence alignment algorithms for next-

generation sequencing, Brief Bioinformatics, 11, 473-483. 

Limdi, N.A. and Veenstra, D.L. (2008) Warfarin pharmacogenetics. 

Pharmacotherapy. pp. 1084-1097. 

Mailman, M.D., et al. (2007) The NCBI dbGaP database of genotypes and 

phenotypes. Nat Genet. pp. 1181-1186. 

Manolio, T.A., et al. (2009) Finding the missing heritability of complex diseases. 

Nature. pp. 747-753. 

McGuire, A.L. and Burke, W. (2008) An unwelcome side effect of direct-to-consumer 

personal genome testing: raiding the medical commons. JAMA. pp. 2669-2671. 

Mooney, S. (2005) Bioinformatics approaches and resources for single nucleotide 

polymorphism functional analysis, Brief Bioinform, 6, 44-56. 

Moore, J.H., Asselbergs, F.W. and Williams, S.M. (2010) Bioinformatics challenges 

for genome-wide association studies. Bioinformatics. pp. 445-455. 

Motsinger, A.A., Ritchie, M.D. and Reif, D.M. (2007) Novel methods for detecting 

epistasis in pharmacogenomics studies. Pharmacogenomics. pp. 1229-1241. 

Motsinger-Reif, A.A., et al. (2010) Genome-wide association studies in 

pharmacogenomics: successes and lessons. Pharmacogenetics and Genomics. pp. 1. 

Ng, P.C. and Henikoff, S. (2003) SIFT: Predicting amino acid changes that affect 

protein function, Nucleic Acids Res, 31, 3812-3814. 

Ng, S.B., et al. (2010) Exome sequencing identifies the cause of a mendelian disorder, 

Nat Genet, 42, 30-35. 

O'Dushlaine, C., Kenny, E. and Heron…, E. (2009) The SNP ratio test: pathway 

analysis of genome-wide association datasets. …. 

Ohashi, W. and Tanaka, H. (2010) Benefits of pharmacogenomics in drug 

development-earlier launch of drugs and less adverse events. J Med Syst. pp. 701-707. 

Paolini, G.V., et al. (2006) Global mapping of pharmacological space. Nat Biotechnol. 

pp. 805-815. 

Perez-Iratxeta, C., et al. (2005) G2D: a tool for mining genes associated with disease, 

BMC Genet, 6, 45. 

Pool, J.E., et al. (2010) Population genetic inference from genomic sequence 

variation, Genome Res, 20, 291-300. 

Radivojac, P., et al. (2008) An integrated approach to inferring gene-disease 

associations in humans, Proteins, 72, 1030-1037. 

Ramensky, V., Bork, P. and Sunyaev, S. (2002) Human non-synonymous SNPs: 

server and survey, Nucleic Acids Res, 30, 3894-3900. 

Rieder, M.J., et al. (2005) Effect of VKORC1 haplotypes on transcriptional regulation 

and warfarin dose. N Engl J Med. pp. 2285-2293. 

Roden, D., et al. (2008) Development of a Large-Scale De-Identified DNA Biobank to 

Enable Personalized Medicine. Clin Pharmacol Ther. pp. 362-369. 

Roses, A.D. (2004) Pharmacogenetics and drug development: the path to safer and 

more effective drugs. Nat Rev Genet. pp. 645-656. 

Roses, A.D. (2009) The medical and economic roles of pipeline pharmacogenetics: 

Alzheimer's disease as a model of efficacy and HLA-B(*)5701 as a model of safety. 

Neuropsychopharmacology. pp. 6-17. 

Rost, S., et al. (2004) Mutations in VKORC1 cause warfarin resistance and multiple 

coagulation factor deficiency type 2. Nature. pp. 537-541. 

Saeys, Y., Inza, I. and Larranaga, P. (2007) A review of feature selection techniques 

in bioinformatics, Bioinformatics, 23, 2507-2517. 

Sagreiya, H., et al. (2010) Extending and evaluating a warfarin dosing algorithm that 

includes CYP4F2 and pooled rare variants of CYP2C9. Pharmacogenetics and 

Genomics. pp. 407-413. 

Schlicker, A., Lengauer, T. and Albrecht, M. (2010) Improving disease gene 

prioritization using the semantic similarity of Gene Ontology terms, Bioinformatics, 

26, i561-567. 

Schymkowitz, J., et al. (2005) The FoldX web server: an online force field, Nucleic 

Acids Res, 33, W382-388. 

Shendure, J. and Ji, H. (2008) Next-generation DNA sequencing. Nat Biotechnol. pp. 

1135-1145. 

Sherry, S.T., et al. (2001) dbSNP: the NCBI database of genetic variation, Nucleic 

Acids Res, 29, 308-311. 

Shuldiner, A.R., et al. (2009) Association of cytochrome P450 2C19 genotype with 

the antiplatelet effect and clinical efficacy of clopidogrel therapy, JAMA, 302, 849-

857. 

 at T
echnische U

niversiteit D
elft on M

arch 4, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


9 

Shuldiner, A.R., et al. (2009) Association of cytochrome P450 2C19 genotype with 

the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA. pp. 849-857. 

Smith TF, W.M. (1981) Identification of Common Molecular Subsequences. Journal 

of Molecular Biology. pp. 195-197. 

Soares, M.L., et al. (2005) Susceptibility and modifier genes in Portuguese 

transthyretin V30M amyloid polyneuropathy: complexity in a single-gene disease. 

Hum Mol Genet. pp. 543-553. 

Statnikov, A., et al. (2005) A comprehensive evaluation of multicategory 

classification methods for microarray gene expression cancer diagnosis, 

Bioinformatics, 21, 631-643. 

Storey, J.D., Akey, J.M. and Kruglyak, L. (2005) Multiple locus linkage analysis of 

genomewide expression in yeast. PLoS Biol. pp. e267. 

Subramanian, A., et al. (2005) Gene set enrichment analysis: a knowledge-based 

approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 

pp. 15545. 

Tavtigian, S.V., et al. (2008) In silico analysis of missense substitutions using 

sequence-alignment based methods, Hum Mutat, 29, 1327-1336. 

Thomas, P.D. and Kejariwal, A. (2004) Coding single-nucleotide polymorphisms 

associated with complex vs. Mendelian disease: evolutionary evidence for differences 

in molecular effects, Proc Natl Acad Sci U S A, 101, 15398-15403. 

Thomas, P.D., et al. (2003) PANTHER: a browsable database of gene products 

organized by biological function, using curated protein family and subfamily 

classification, Nucleic Acids Res, 31, 334-341. 

Thorn, C.F., Klein, T.E. and Altman, R.B. (2010) Pharmacogenomics and 

bioinformatics: PharmGKB, Pharmacogenomics, 11, 501-505. 

Thusberg, J., Olatubosun, A. and Vihinen, M. (2011) Performance of mutation 

pathogenicity prediction methods on missense variants, Hum Mutat, 32, 358-368. 

Tranchevent, L., et al. (2010) A guide to web tools to prioritize candidate genes, 

Briefings in Bioinformatics. 

Tranchevent, L.C., et al. (2008) ENDEAVOUR update: a web resource for gene 

prioritization in multiple species, Nucleic Acids Res, 36, W377-384. 

van Driel, M.A., et al. (2006) A text-mining analysis of the human phenome, Eur J 

Hum Genet, 14, 535-542. 

Wainreb, G., et al. (2010) MuD: an interactive web server for the prediction of non-

neutral substitutions using protein structural data, Nucleic Acids Res, 38 Suppl, 

W523-528. 

Wang, K. and Li, M. (2007) Pathway-based approaches for analysis of genomewide 

association studies. The American Journal of Human Genetics. 

Weinshilboum, R. (2001) Thiopurine pharmacogenetics: clinical and molecular 

studies of thiopurine methyltransferase, Drug Metab Dispos, 29, 601-605. 

Wilffert, B., et al. (2010) From evidence based medicine to mechanism based 

medicine. Reviewing the role of pharmacogenetics, Pharm World Sci. 

Wilke, R.A., Reif, D.M. and Moore, J.H. (2005) Combinatorial pharmacogenetics. 

Nat Rev Drug Discov. pp. 911-918. 

Williams, S.M., et al. (2004) Multilocus analysis of hypertension: a hierarchical 

approach. Hum Hered. pp. 28-38. 

Woolfe, A., Mullikin, J.C. and Elnitski, L. (2010) Genomic features defining exonic 

variants that modulate splicing, Genome Biol, 11, R20. 

Wray, N.R., Goddard, M.E. and Visscher, P.M. (2007) Prediction of individual 

genetic risk to disease from genome-wide association studies. Genome Res. pp. 1520-

1528. 

WTCC Consortium (2007) Genome-wide association study of 14,000 cases of seven 

common diseases and 3,000 shared controls, Nature, 447, 661-678. 

Wu, Z. and Zhao, H. (2009) Statistical power of model selection strategies for 

genome-wide association studies. PLoS Genet. pp. e1000582. 

Wysowski, D.K., Nourjah, P. and Swartz, L. (2007) Bleeding complications with 

warfarin use: a prevalent adverse effect resulting in regulatory action. Arch Intern 

Med. pp. 1414-1419. 

Yeung, K.Y. and Ruzzo, W.L. (2001) Principal component analysis for clustering 

gene expression data, Bioinformatics, 17, 763-774. 

Yildirim, M.A., et al. (2007) Drug-target network. Nat Biotechnol. pp. 1119-1126. 

Yngvadottir, B., et al. (2009) The promise and reality of personal genomics. Genome 

Biology. pp. 237. 

Yu, K., et al. (2009) Pathway analysis by adaptive combination of P-values. Genetic 

…. 

Yue, P. and Moult, J. (2006) Identification and analysis of deleterious human SNPs, J 

Mol Biol, 356, 1263-1274. 

Zhang, W. and Dolan, M.E. (2009) Use of cell lines in the investigation of 

pharmacogenetic loci. Curr Pharm Des. pp. 3782-3795. 

Zhang, Z. and Gerstein, M. (2003) Patterns of nucleotide substitution, insertion and 

deletion in the human genome inferred from pseudogenes, Nucleic Acids Res, 31, 

5338-5348. 

Zhou, H. and Zhou, Y. (2002) Distance-scaled, finite ideal-gas reference state 

improves structure-derived potentials of mean force for structure selection and 

stability prediction, Protein Sci, 11, 2714-2726. 

 
 

 at T
echnische U

niversiteit D
elft on M

arch 4, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/



